摘要
随着Web 2.0时代的兴起,微博作为一个新的信息分享平台已经成为人们生活中一个重要的信息来源和传播渠道。近年来针对微博的情感分类问题研究也越来越多地引起人们的关注。该文深入分析了传统的情感文本分类和微博情感分类在特征表示和特征筛选上存在的差异,针对目前微博情感分类在特征选择和使用上存在的缺陷,提出了三种简单但十分有效的特征选取和加入方法,包括词汇化主题特征、情感词内容特征和概率化的情感词倾向性特征。实验结果表明,通过使用该文提出的特征选择和特征加入方法,微博情感分类准确率由传统方法的73.17%提高到了84.17%,显著改善了微博情感分析的性能。
-
单位中国科学院自动化研究所; 模式识别国家重点实验室