摘要
夜间图像去雾对于夜间场景下无人驾驶、交通安防等有重要的工程应用价值。针对暗通道先验算法在夜间雾天场景下的失效问题,提出一种基于自适应大气光和加权引导滤波的夜间图像去雾算法。该算法首先基于图像亮度和饱和度联合求取信道图,并将信道图作为引导图对原图像进行引导滤波得到大气光分布图,为解决暗通道先验在图像亮区域的失效问题,引入亮通道先验矫正亮区域的透射率,为优化亮、暗通道透射率的融合,建立一种基于分段伽马矫正的融合权值计算方法,用于亮区域透射率的权值计算,并利用该透射权值加权得到图像的初始透射率;然后利用加权聚合引导滤波代替引导滤波细化初始透射率,通过基于相似度为滤波中心像素的邻域像素赋予权值,并在滤波聚合阶段采用加权聚合代替均值聚合,解决引导滤波弱化细小纹理而引起的边缘模糊问题;最后将复原图像转换到HSV空间,对亮度分量V进行均衡化调整,并对均衡化前后的图像进行线性加权获得最终复原结果。实验结果表明,所提算法大气光分布图估值合理,可有效反映夜间多光源场景下的大气光分布情况,图像亮、暗区域透射率计算准确,复原图像去雾彻底、纹理清晰,与经典算法对比显示,复原结果的峰值信噪比、信息熵、平均梯度和方差的最大提升幅度分别为49.4%、18.3%、172.3%、115%,综合指标优于所对比的算法。
- 单位