摘要

近年来,电力行业快速发展,对电力负荷进行预测也越来越重要,其中短期负荷预测对于电力系统的调度和市场运行起到极其重要的作用,精准的电力负荷预测可以有效提高发电设备利用度。融合卡帕(Kappa)测度和萤火虫算法的进行选择性集成学习方法实现短期负荷预测,该方法首先使用自展法(bootstrap抽样)生成多个学习器,然后使用Kappa测度对学习器进行初步筛选,接着使用萤火虫算法从中选择部分差异度大、准确率高的学习器参与集成,其准确率相较于单个学习器而言,有着明显提升。选取2015-2016年武汉2家激光企业的日均负荷曲线作为研究对象,进行负荷预测,通过与其他预测方法进行对比,该方法的预测精度较高。