摘要
从探地雷达属性分析入手,研究探地雷达属性分析和BP神经网络相结合的路基含水率预测的方法。根据铁路路基模型含水率试验数据,优选出最大峰值振幅、总能量、主频带能量、百兆带宽能量百分比、峰值频率、平均瞬时相位、能量半衰时等7种探地雷达属性作为铁路路基含水率预测的基本参数,结合含水率测试资料,建立路基含水率BP神经网络预测模型,预测含水率与实际含水率的相关系数,反映铁路路基含水率与探地雷达属性之间的非线性关系。
-
单位高速铁路轨道技术国家重点实验室; 中国铁道科学研究院