针对水下无人航行器路径规划中强化学习方法存在训练不稳定、时间长的弊端,提出了一种课程式双重深度Q学习网络(DQN)算法。该算法融合经验回放池技术,有效缩短了训练时间,并消除了Q学习网络引起的最大化偏差问题。同时,结合课程式学习改进双重DQN算法,加快了学习收敛速度。通过静态、动态障碍物环境的水下无人航行器路径规划仿真结果表明,所提出的课程式双重DQN算法可行、有效。该实验仿真研究可培养学生开展独立科学研究的能力。