摘要

基于经典的Convolutional Social LSTM轨迹预测算法,提出一种全新的采用注意力机制的车辆运动轨迹预测算法.引入横向注意力机制对邻居车辆赋予不同的权重,将车辆历史轨迹经由LSTM得到的特征作为全局特征,通过卷积池化提取轨迹特征作为局部特征,将两者融合作为整体邻居特征信息,用于轨迹预测.对用于传统轨迹预测的Encoder-Decoder框架进行改进,引入关于历史位置的纵向注意力机制,使得预测的每一时刻都能使用与当前时刻最相关的历史信息.在NGSIM提供的US101和I80数据集进行验证,结果表明:提出的轨迹预测算法相比其他算法能更精确地预测车辆未来轨迹.