摘要

单像素成像使用一系列空间光调制掩模对目标场景进行单像素亚采样,再根据掩模与测量值之间的关联重构出物体图像。这种间接获取图像的方式之所以能保证重建质量,除了有重构算法的功劳,更关键的是得益于测量掩模构造。随着压缩感知理论的引入,随机掩模进入人们视野,但它让测量变得盲目,缺乏针对性,而且这种掩模不便于存储和计算,极大限制了空间像素分辨率。哈达玛基掩模因其结构化特征能使快速计算成为可能,且方便存储和提取,近年来得到广泛关注,已发展出诸多哈达玛基掩模优化排序方法,经证实能大幅降低采样率。本文系统地梳理了这类方法的设计框架和前沿进展,展望了确定性掩模构造的未来发展趋势,将为后续的研究工作提供有益的借鉴和指导。