摘要
针对用单一分类器对网络进行异常检测时存在的检测率低、虚警率高等问题,提出了一种新的融合球向量机(BVM,Ball Vector Machine)与极限学习机(ELM,Extreme Learning Machine)的异常检测方法.该方法分别用BVM与ELM对三类网络特征进行学习,通过BP神经网络训练出相应权值来融合标签.实验表明:使用该融合方法进行网络异常检测的性能要优于使用单一的BVM或ELM;相对于融合传统的SVM与BP网络的方法,融合BVM与ELM网络异常检测方法的检测率与虚警率与传统方法相当,但其训练速度快、整体性更优.
-
单位西安石油大学; 中国石油勘探开发研究院西北分院; 西安财经学院行知学院