摘要

针对目前滚动轴承剩余使用寿命(RUL)预测存在的预测精度不高、预测模型累计误差大等问题,提出一种融合Hodrick-Prescott(HP)趋势滤波边界线(HPTF-BL)、猎人猎物优化算法改进粒子滤波(HPO-PF)的滚动轴承剩余使用寿命预测方法。该方法首先将HP趋势滤波与退化边界线构建相结合,对表达轴承退化信息的特征指标进行处理,得到上下退化边界与主要退化趋势,然后利用猎人猎物优化算法(HPO)改进粒子滤波(PF)的重采样过程,再使用改进的方法对特征指标进行趋势预测,最后结合设定的失效阈值线得到最终的剩余使用寿命。使用美国辛辛那提大学智能维护系统(IMS)中心的轴承实验数据验证了所提方法的可行性与有效性。

全文