摘要

微换衣行人再识别是以换衣幅度不大的情况为前提,从不同摄像头场景中查找某特定身份的行人的一项计算机视觉技术。现有行人再识别方法的实现通常是基于行人衣着不变的假设,因此它们依赖的是与衣着相关的特征。那么,当此假设不成立时,这些方法就难以实现理想的识别效果。考虑到行人换衣幅度不大时行人体态基本不发生改变这一重要特点,针对微换衣行人再识别展开研究。受生物视觉系统中双目叠加效应的启发,采取仿生思想提出一个自注意力孪生网络,类比生物双眼获取信息的过程。首先,该网络以同一行人不同衣着的两类图像作为双分支输入,并利用孪生架构实现叠加效应。随后对输出的多个特征进行对比学习和融合学习,进而得到具有身份辨别力的行人特征表示。最后,在微换衣行人再识别相关数据集上进行了充分实验,结果表明该方法可达到当前最好的识别性能。

  • 单位
    中国人民解放军陆军工程大学