摘要
赤潮是严重的海洋灾害,有效监测赤潮对于保护海洋生态环境具有重要意义。高光谱遥感具有光谱分辨率高、图谱合一等优势,适合于海洋赤潮监测。深度学习是机器学习领域的前沿,为高光谱遥感分类提供了新的思路。深度置信网络(Deep Belief Network,DBN)兼具监督分类与非监督分类的特点,通过构建DBN模型,将DBN应用于赤潮灾害遥感监测中,应用渤海机载高光谱遥感数据开展赤潮分类,以达到提取高光谱图像中赤潮水体范围的目的。通过设置对照实验,对比经典的SVM监督分类方法与ISODATA非监督分类方法,发现DBN模型在相同实验条件下具有更高的分类精度,赤潮遥感提取精度提高了3%~11%。
-
单位自然资源部第一海洋研究所; 山东科技大学