摘要

为提高短时交通流预测精度,针对传统径向基函数(radial basis function, RBF)神经网络短时交通流预测模型中心值固定、易受漂移数据干扰问题,提出自适应天牛须搜索算法(beetle antennae search algorithm, BAS)优化RBF神经网络的短时交通流预测模型。模型采用自适应步长提高BAS算法迭代速度和寻优能力,结合DBSCAN聚类确定RBF神经网络隐含层径向基函数网络中心,进而优化神经网络结构。通过路网真实交通流数据进行训练,选择常用于短时交通流预测的BP神经网络,RBF神经网络,广义RBF神经网络进行对比。结果表明:优化后的模型预测结果相较BP神经网络平均绝对误差降低了1.87%、平均绝对百分比误差降低了15.96%、均方根误差降低了3.24%,拟合度提高了3.96%;相较广义RBF神经网络平均绝对误差降低1.36%、平均绝对百分比误差降低了5.01%、均方根误差降低了2.19%,拟合度提高了2.5%。改进后的短时交通流预测模型能够为智能交通诱导提供可靠的预测值。