摘要

深度学习模型应用于输电线路绝缘子目标检测时,在训练样本方面存在公开样本集缺乏和优质样本不足的问题,为此提出一种基于循环一致性生成对抗网络(cycle-generative adversarial networks,Cycle-GAN)的绝缘子图像生成方法。首先分析绝缘子样本集,对绝缘子图像基于背景色彩特征进行风格域划分;之后在划分好的绝缘子风格域样本集基础上,采用Cycle-GAN生成绝缘子图像样本;最后,搭建分类网络验证生成图像用于扩充的有效性,并进一步探究了生成图像不同扩增比例对分类性能的影响。结果表明:绝缘子生成样本可一定程度上替代真实样本;生成图像不同扩充比例对网络性能影响不同,当扩充比例在40%~50%时,分类网络性能提升效果最佳。