摘要

文中针对经验模态分解(EMD)分解结果的准确性对断路器机械故障诊断结果的影响,提出基于边界延拓的EMD和径向基(RBF)神经网络融合的断路器机械故障诊断方法:首先采用最小二乘法进行边界延拓克服EMD分解过程中的端点效应,以减少信号的拟合误差;然后采用改进的EMD分解法将断路器机械振动信号分解为有限个相互独立的IMF函数,并计算包含不同频率成分的IMF包络的能量熵值,将能量熵向量作为RBF神经网络的输入,再采用交替梯度法训练RBF神经网络模型,实现对断路器机械故障的准确诊断;实验结果说明,该方法可以有效的诊断断路器机械故障类型。

全文