摘要
基于机器学习的Android平台恶意软件检测方法提取的权限信息特征维度高且类别区分能力弱,导致检测精度低及复杂度高。为此,提出一种基于特征占比差与加权随机森林的恶意软件检测方法。通过获取Android软件的权限信息和硬件组件信息,分析各类特征的占比差,并将特征属性作为分类模型的输入。在此基础上,对随机森林中的树模型赋予不同的权值,验证树模型对最终分类结果的影响。实验结果表明,与神经网络方法相比,基于特征占比差的特征构建方法所提取的特征具有较好的类别区分能力,且改进后的随机森林能提高恶意软件检测的准确性。
-
单位重庆邮电大学; 重庆文理学院