摘要

齿轮箱故障诊断存在变速工况、样本数量偏少以及会形成强噪声情况,提出了一种通过多尺度特征融合网络(MFFN)实现故障诊断技术。对初始时域信号拓展形成多特征域,建立造多维堆栈稀疏自编码器(MSSA)对不同特征域进行故障采集,通过粒子群算法优化回声状态网络(IESN)进行信号处理。研究结果表明:样本充足条件下,MFFN模型诊断时,定速工况为99.15%,变速工况为98.46%,达到了更高准确率并降低了标准差。在样本不足条件下,深度特征融合网络(DEFN)和MFFN对于样本数量减少表现出了优异鲁棒性,MFFN达到了更优的性能。在噪声干扰场景下,采用MFFN依然能够达到85%的准确率。该算法具备更优抗干扰性能,采用多维特征提取能够更好地适应处于强噪声干扰环境。该研究为实现传动系统的稳定运行提供了理论参考。

全文