摘要
为解决推荐算法中数据稀疏的问题,利用知识图谱中的语义信息,更加准确地构建用户画像。以DBpedia中电影知识图谱为例,提出将自动编码器的网络结构与基于知识图谱的语义信息结合,赋予隐藏层中的神经元电影主题意义,从用户的观影历史中,得到每个用户对相关主题的偏好程度,完善用户画像的构建,运用协同过滤算法进行推荐。对比实验结果表明,该算法在准确率、召回率等推荐性能指标方面有着良好的表现。
-
单位南京市锅炉压力容器检验研究院; 南京工业大学