摘要

针对基于深度强化学习的机械臂轨迹规划方法学习效率较低,规划策略鲁棒性差的问题,提出了一种基于语音奖励函数的机械臂轨迹规划方法,利用语音定义规划任务的不同状态,并采用马尔科夫链对状态进行建模,为轨迹规划提供全局指导,降低深度强化学习优化的盲目性。提出的方法结合了基于语音的全局信息和基于相对距离的局部信息来设计奖励函数,在每个状态根据相对距离与语音指导的契合程度对机械臂进行奖励或惩罚。实验证明,设计的奖励函数能够有效地提升基于深度强化学习的机械臂轨迹规划的鲁棒性和收敛速度。