摘要

在中国城市化的进程中,建设用地常常连片分布,其开发在空间上具有明显的聚集性,表现出较强的空间自相关性,这在高空间分辨率的遥感图像中更加明显。基于2016年、2017年两期南京市域内的北京2号3.2 m多光谱遥感图像,对比分析了引入变化向量的空间自相关指数作为图像特征后建设用地遥感变化检测的性能。首先提取遥感图像光谱变化向量的局部G指数、Moran’s I和Geary’s C三个典型空间自相关指数,然后确定适用于变化检测的最优空间间隔(Lag)范围和最优自相关指数。结果表明:(1)光谱变化向量在空间上具有显著的正相关性。(2)全局Moran’s I和半方差函数相结合可以确定最优的Lag范围。(3)在光谱变化向量的基础上加入局部G指数和局部Moran’s I能够提高检测精度,F1分数表明前者优于后者。(4)在光谱变化向量的基础上加入最优Lag范围内的局部G指数作为附加图像特征,F1分数比只使用光谱变化向量提高了20%以上。融合空间自相关信息,特别是多尺度局部G指数作为遥感图像特征可有效地提高连片区域建设用地的变化检测精度。

  • 单位
    南京师范大学; 虚拟地理环境教育部重点实验室; 江苏省地理信息资源开发与利用协同创新中心