摘要
近年来交通事故及其损失严重影响社会经济的发展和人民生活的提高,交通事故预测可以为交通事故预防提供数据支持。基于自回归滑动平均(ARIMA)模型和极端梯度提升(XGBoost)模型,构建时间序列组合预测模型,对交通事故相关指标进行趋势预测。根据交通事故的特点,选定"事故起数""受伤人数""死亡人数"及"损失"4个指标。首先,根据自相关、偏自相关图确定ARIMA模型参数,根据AIC(赤池信息准则)值确定最终模型;然后,对4个指标的ARIMA模型预测结果的残差构建残差序列,对其进行XGBoost建模,得出修正后的残差预测值;最后,根据残差预测值和ARIMA模型预测值得出组合模型最终的预测值。实例结果表明,4项指标的混合预测模型的预测精度均优于单一的ARIMA模型和Holt-winters模型,其中以"受伤人数"和"死亡人数"的模型改善效果最为显著,"受伤人数"指标的平均绝对百分比误差降低了5.431 7个百分点,"死亡人数"指标的平均绝对百分比误差降低了3.625 9个百分点。