摘要
针对粒子群优化(particle swarm optimization,PSO)算法无法在提高收敛速度的同时避免早熟的缺陷,提出基于正态分布衰减惯性权重粒子群优化(normal distribution decay inertial weight particle swarm optimization,NDPSO)算法.以正态分布曲线作为惯性权重的衰减策略曲线,通过引入控制因子对粒子的位置进行改善,使得NDPSO算法能很好的在优化过程中平衡全局搜索和局部搜索能力.使用8个标准函数测试分别对粒子群优化(particle swarm optimization,PSO)、线性权重衰减粒子群优化(linear decay inertial weight particle swarm optimization,LDWPSO)、指数权重衰减粒子群优化(exponential decay weight particle swarm optimization,EXPPSO)、收缩因子粒子群优化(constriction factor particle swarm optimization,CFPSO)、高斯分布衰减惯性权重粒子群优化(Gaussian decay inertial weight particle swarm optimization,GDIWPSO)、基于动态加速度系数的粒子群优化(particle swarm optimization based on dynamic acceleration coefficients,PSO-DAC)、性权重自适应粒子群优化(inertia weight adaptive particle swarm optimization,简称PSO-LH)算法以及NDPSO算法进行仿真,分析他们的收敛速度和收敛精度.结果表明,NDPSO算法不管在单峰函数问题还是多峰函数问题上,总体性能都优于其他算法.
- 单位