摘要
针对甲状腺B超图像的低对比度和SPECT图像的低空间分辨率的特点,提出了一种基于非下采样Shearlet变换(NSST)和改进脉冲耦合神经网络(PCNN)相结合的图像融合算法。本文用NSST将两幅经过精确配准的源图像分解,得到低频子带系数以及不同尺度和方向的高频子带系数。低频系数采取区域能量取大的融合规则,高频系数采取改进的PCNN算法,将改进的拉普拉斯能量和作为PCNN的输入项,梯度能量作为PCNN的链接强度,利用点火输出幅度总和取大的融合规则选择高频系数,最后通过NSST逆变换得到融合图像。实验结果表明,本文所提出的算法在主观视觉和客观标准上均取得良好的效果。
-
单位河北大学附属医院; 电子信息工程学院; 河北大学