摘要

针对储层岩性种类繁多、交替频繁、组成复杂传统方法识别精度低、效率慢的问题,本文提出一种多尺度时频空三域特征联合下的储层岩性识别方法。该方法在原始测井特征的基础上引入了互补集合经验模态分解(CEEMD)的多尺度频域分量,从而提高测井曲线的纵向分辨率。此外,构建了注意力机制优化的多尺度卷积双向门控循环神经网络(CNN-BiGRU-AT)模型,对加入了多尺度频域分量的测井数据进行时空特征提取,从而实现了对测井数据时、频、空三域特征的联合学习,最后以注意力机制优化了模型输出,减少了错误信息的传播。为了验证方法可靠性,本文选取了资料较为完整的五口井数据进行实验分析。结果表明,在不同数据组合的对比实验中,加入多尺度频域分量在训练集和验证集识别准确率分别提高了9.50%和8.66%。在与不同模型对比实验中,本文方法在样本识别准确率达到了94.11%,与支持向量机(SVM)、BP神经网络、卷积神经网络(CNN)、双向门控循环神经网络(BiGRU)和CNN-BiGRU融合模型相比,本文方法识别准确率分别提高了16.21%、14.54%、11.69%、5.05%、3.38%。