摘要
现有视频行人检测方法把行人检测看成一个有监督的两类(即行人和背景)学习问题,区分视频中的行人和背景,并不能很好解决行人的姿态变化和行人间的遮挡问题.文中提出基于图切割和密度聚类的行人检测算法,把行人检测看成一个多类的无监督学习过程.在训练阶段,首先对每个训练样本计算多级梯度方向直方图-局部二分模式(HOG-LBP)特征,然后对多级HOG-LBP特征所属的每个图像块分配不同的权值.为了区别行人的不同部位并赋权值,采用基于图像块的图分割方法从背景中分割行人所在的图像块.最后,再采用基于密度峰值的聚类算法对正样本和负样本分别进行无监督的聚类.在测试阶段,首先通过计算样本特征与每个聚类中心的距离,然后使用前5个最短距离进行投票,判断其是否包含行人.实验证明,文中算法较好解决行人的姿态变化和行人间的遮挡问题,并且随着训练样本的增加,能取得和目前最优行人检测方法可比较的结果.
-
单位贵州理工学院