摘要

基于现有深度学习技术,采用基于残差神经网络ResNet的变体SE-ResNeXt,构建可以自动进行苹果品种分类的卷积神经网络模型,并基于迁移学习方法训练模型。数据来源于甘肃省静宁县苹果产业基地拍摄的20类苹果叶片图像,其中每类苹果叶的图片数据量为50幅,合计1000幅。在该数据集上,对ResNet50、ResNet101、SE-ResNet50、SEResNet101、SE-ResNeXt50、SE-ResNeXt101这6个模型进行对比实验。结果表明,SE-ResNeXt101的结果优于其它对比模型,最高准确率达到97.5%,单张图片推断时间仅0.125 s。本文方法为今后苹果种植过程中高效、准确地识别苹果品种提供了一种手段,对辅助农技科研与苹果种植具有较大的帮助作用。