摘要

心脏核磁共振成像(MRI)具有噪声多、背景和目标区域相似度高、右心室形状不固定、呈月牙形或扁圆形等特点,虽然基于卷积神经网络的U型结构在医学图像分割中表现出色,但由于卷积本身的局部运算特性,提取全局信息特征能力有限,所以很难提升在心脏MRI上的分割精度.针对上述问题,提出一种全局和局部信息交互的双分支网络模型(UConvTrans).首先,利用卷积分支和Transformer分支提取局部特征和建模全局上下文信息,能够保留细节信息并抑制心脏MRI中噪声和背景区域的干扰.其次,设计了融合卷积网络和Transformer结构的模块,该模块将二者提取的特征交互融合,增强了模型表达能力,改善了右心室的分割精度,而且避免了Transformer结构在大规模数据集上预训练,可以灵活调节网络结构.此外,UConvTrans能有效地平衡精度和效率,在MICCAI 2017 ACDC数据集上进行验证,该模型在模型参数量、计算量仅为U-Net的10%、8%的情况下,平均Dice系数比U-Net提高了1.13%.最终,在其官方测试集上实现了右心室92.42%、心肌91.64%、左心室95.06%的Dice系数,在心肌及左心室区域取得了到目前为止最好的结果.

全文