摘要

全球变暖导致冰川急剧退缩,及时的冰川监测和制图至关重要,而积雪覆盖一直是冰川识别的重要影响因素。以喀喇昆仑区域为例,选择春季Landsat-8 OLI、Sentinel-1和DEM数据,结合其光谱反射率、SAR散射以及地形等特征,基于不同主干网络的U-Net和DeepLabv3+深度学习方法,使用不同样本尺寸,不同特征组合进行冰川识别对比研究。结果表明:(1)对于256×256、512×512和1 024×1 024像素样本尺寸,训练样本尺寸越大,空间上下文信息越丰富,识别精度越高,冰川末端范围更为精确。(2)基于MobileNet、VGGNet、ResNet以及EfficientNet主干提取网络的U-Net语义分割网络中,VGG19主干网络识别精度最好,且优于DeepLabv3+网络结果,其F1值(F1-Score)为0.899 6,均交并比(Mean Intersection over Union,mIoU)为0.875 4,总体精度可达0.948 4,在山体阴影、冰雪融水、薄雾覆盖和冰冻湖泊区域识别效果均较好。(3)随着训练特征数量的减少,精度随之降低,地形特征对于提高冰川识别精确度作用显著,SAR特征则可提升召回率。研究证明了深度学习方法识别积雪覆盖的山地冰川的可行性,为山地冰川快速大面积识别的模型选择和参数设置提供了可靠的参考依据。