摘要
航拍图像目标检测存在多尺度目标检测精度低、检测速度慢、漏检和误检严重等问题。针对这些问题,提出一种融合卷积注意力机制和轻量化网络的目标检测算法(pro-YOLOv4),并应用于多尺度航拍图像目标检测。首先,利用K-means聚类算法对航拍数据集进行聚类分析并优化锚框参数,以提高对目标检测的有效性;其次,采用轻量级网络结构,精简网络复杂度,提高检测速度;最后,引入卷积注意力模块来解决复杂场景对于航拍目标检测的干扰,从而有效降低误检率和漏检率。在航拍数据集RSOD和NWPU VHR-10上进行实验对比,实验结果表明,pro-YOLOv4检测效果较YOLOv4有明显提升,平均检测精度分别提高了3.42%和3.98%。该算法不仅对多尺度目标均表现出较好检测性能,还降低了目标漏检率,并具有较好的鲁棒性和泛化能力。
- 单位