摘要
结构面广泛分布于岩体之中,难以逐一进行分析。现有研究方法存在对初始信息敏感,分组结果可靠性差,以及难以准确对产状相近的结构面进行分组等不足。针对上述问题,提出了一种基于鹈鹕优化算法(POA)的岩体结构面分组方法。首先,利用POA算法全局寻优初始聚类中心,结合模糊C均值算法(FCM)将结构面产状数据进行完全分组。其次,利用蒙特卡罗模拟技术,生成符合Fisher分布的产状数据。最后,基于正交设计,对比传统FCM算法,以识别错误率为指标,研究了新算法在不同结构面数量、结构面组数、聚类中心、离散度情况下分组精度的变化规律。结果表明:聚类中心对分组精度具有显著影响;所提方法能对产状极点边界不清晰的结构面数据进行有效分组,可有效提高分组精度和分组结果的可靠性。以大连某水库边坡结构面数据为基础,对其进行分组处理,验证了新方法的工程实用性。研究结果可以为结构面三维网络计算机模拟和岩体工程稳定性分析提供依据。
- 单位