摘要

针对流场粒子图像测速实验中时间和空间高分辨率测量代价高的问题,研究了数据驱动的流场时空重构方法。为了对实验测得的低分辨率数据进行时空高分辨率重构,提出了一种基于深度神经网络的流场时空重构方法,并构建了一种基于卷积神经网络和长短时记忆神经网络的混合深度神经网络。该混合深度神经网络能够学习流场的时空演化特征,训练完成后可实现对实验数据的时空高分辨率重构。测试结果表明:只进行流场空间高分辨率重构时,重构出的流场与真实流场之间的均方根误差为0.006 5左右,流场数据点数是原来的51倍;同时进行流场时间和空间高分辨率重构时,重构出的流场与真实流场之间的均方根误差可保持在0.065左右,流场时间维度的密度是原来的5倍,可极大提高实验效率,节约实验成本。