基于网络嵌入和关联相似性的链路预测算法

作者:冯仁君*; 陈海雁; 王芳
来源:计算技术与自动化, 2020, 39(02): 114-118.
DOI:10.16339/j.cnki.jsjsyzdh.202002023

摘要

链路预测作为复杂网络分析的一个重要分支,在不同领域中有着广泛的应用,而且通过进一步提取网络结构信息可以提高链路预测的精度。提出了一种基于结构深度网络嵌入和关联相似性的链路预测算法(Structural Deep Correlation Similarity Network Embedding,SDCSNE)。SDCSNE算法结合了网络嵌入捕捉高维非线性网络结构的特征,将网络映射到向量空间中,这些映射向量的内积即为对应节点的相似性,并保持了全局和局部的网络结构,获得了更加稳定的网络结构信息;SDCSNE算法还融入了节点的关联性,以提高预测的准确性。实际结果表明,在链路预测任务中,SDCSNE算法具有良好的性能。