摘要
针对我国油茶果采摘过程中存在的自动化水平落后、采摘效率低、适采周期短的现状,应用于机器人收获技术的机器视觉技术受限于真实场景中复杂背景干扰从而导致识别精度较低的问题。以自然场景下的油茶果为研究对象,提出一种基于Mask-RCNN的自然场景下油茶果目标识别与检测算法,首先获取油茶果图像并建立数据集,利用ResNet卷积神经网络提取油茶果果实图片的特征,获得果实目标分割结果,再采用RPN对所得到的特征图进行操作,并增加全连接层,提取每个样本mask像素面积,并对目标类别进行预测。利用测试集分别测试油茶果的分割网络模型及目标识别算法,结果表明,网络模型的分割准确率为89.85%,油茶果目标识别的平均检测精度为89.42%,召回率为92.86%。本算法能够自动检测油茶果目标,并有效降低不同光照情况下叶片与花苞遮挡、果实重叠、果实色泽等因素干扰,为自然场景中果实自动化采摘提供可靠的视觉支持。
- 单位