摘要
基于图的无监督特征选择方法大多选择投影矩阵的l2,1范数稀疏正则化代替非凸的l2,0范数约束,然而l2,1范数正则化方法根据得分高低逐个选择特征,未考虑特征的相关性.因此,文中提出基于l2,0范数稀疏性和模糊相似性的图优化无监督组特征选择方法,同时进行图学习和特征选择.在图学习中,学习具有精确连通分量的相似性矩阵.在特征选择过程中,约束投影矩阵的非零行个数,实现组特征选择.为了解决非凸的l2,0范数约束,引入元素为0或1的特征选择向量,将l2,0范数约束问题转化为0-1整数规划问题,并将离散的0-1整数约束转化为2个连续约束进行求解.最后,引入模糊相似性因子,拓展文中方法,学习更精确的图结构.在真实数据集上的实验表明文中方法的有效性.
- 单位