摘要
随着信息技术的高速发展,每条数据所包含的信息越来越丰富,使得数据不可避免地含有异常值,且随着维数的增加,异常值出现的可能性更大。传统的主成分聚类分析对异常值特别敏感,基于MCD估计的主成分聚类方法虽然对异常值具有防御作用,但是在高维数据下MCD估计的偏差过大,其稳健性显著降低,而且当维数大于观测值个数时MCD估计失效。为此本文提出了基于MRCD估计的稳健主成分聚类方法,数值模拟和实证分析表明,基于MRCD估计的主成分聚类分析的效果优于传统的主成分聚类分析和基于MCD估计的主成分聚类分析,尤其是在维数大于样本观测值的情况下,MRCD估计更为有效。
- 单位