摘要

文章基于物理信息神经网络(physics-informed neuralnetworks,PINN)求解非线性瞬态热传导问题并识别随温度变化的导热系数。首先,基于热传导问题的控制方程,利用初始条件和边界条件,构建损失函数。然后,应用自动微分算法求解控制方程中温度的偏导数。使用梯度下降算法,更新网络参数,最小化损失函数,实现热传导正问题的求解,并讨论了不同隐藏层数、神经元数量和域内数据点数量对计算结果的影响。最后,采用PINN识别随温度变化的导热系数,利用控制方程、测量温度和计算温度的残差构建损失函数,通过梯度下降算法,更新网络参数和导热系数,使其逼近于精确解,并比较了不同的测点数量和测量误差对计算结果的影响。结果表明,PINN能够有效求解非线性瞬态热传导问题并识别与温度相关的导热系数。