情感识别中的迁移学习问题综述

作者:黄兆培; 张峰源; 赵金明; 金琴
来源:信号处理, 2023, 39(04): 588-615.
DOI:10.16798/j.issn.1003-0530.2023.04.002

摘要

情感识别是实现自然人机交互的必要过程。然而,情感数据高昂的采集和标注成本成为了限制情感识别研究发展的一大瓶颈。在无标注或有限标注的场景下,利用知识的跨领域或跨任务迁移提升情感识别效果的问题值得探索。本文对情感识别中的迁移学习问题进行了梳理和分析。首先,将迁移学习问题划分为针对领域差异和针对任务差异的两大部分,并进一步将每部分问题细分为多种不同的情况。随后,基于情感识别领域的研究现状,分别总结不同情况下的现有工作。在目标领域训练资源匮乏的情况下,可以利用其他带标注的数据集作为源领域训练模型,并对齐不同领域下的特征分布,或将特征映射到域间共享的空间。考虑到情感标签所提供的监督信息往往较为有限,为了进一步提升模型的识别效果,可以引入其他相关任务进行联合训练,或将预训练模型、外部知识库提供的先验语义知识迁移到情感识别任务中。最后,讨论了情感识别领域中未来需要得到更多关注和探索的迁移学习问题,旨在为研究者带来新的启发。