摘要

高压隔膜泵单向阀运行工况复杂,运行时产生的振动信号具有非线性、非平稳特性,导致信号特征提取困难,故障状态难以识别.为了提取单向阀运行状态的非线性动力学特征,提升故障诊断模型的识别精度和泛化能力,提出了一种基于多尺度排列熵(Multi-scale Permutation Entropy,MPE)和正则化随机向量函数链接(Random Vector Functional Link,RVFL)网络的单向阀故障诊断方法.首先,对工况下采集的单向阀振动信号进行变分模态分解(Variational Mode Decomposition,VMD)获得既定的若干本征模态函数(Intrinsic Mode Function,IMF)分量;然后,计算IMF分量的多尺度排列熵,构建表征单向阀运行状态的特征值向量;最后,基于运行状态的特征值向量,建立正则化随机RVFL的故障诊断模型,并应用于单向阀的运行状态监测与识别.实验结果表明,构建的故障诊断模型能够精确地识别单向阀的故障类型,准确率达到98.89%.