摘要

针对基于多模式遥感手段的大区域森林地上生物量(AGB)定量反演效率低的问题,充分集成主、被动遥感对森林AGB多维观测特征,提高区域定量反演结果;针对两期反演结果分析,揭示区域森林AGB空间变化格局,为科学评估区域生态环境保护(如天然林保护)、提升国家生态环境遥感连续动态监测与预警能力提供支撑。以内蒙古大兴安岭林区为研究区,以2009年为主的光学LandsatTM5(TM)与ALOS-1 PALSAR,以及2014年为主的高分一号(GF-1)与ALOS-2PALSAR两期主、被动遥感数据提取特征因子,利用快速迭代特征选择的k-NN方法(k-Nearest Neighbor with Fast Iterative Features Selection,KNN-FIFS),实现主、被动遥感特征组合快速优化及最优估测模型构建;基于第七次、第八次森林资源连续清查样地数据,对两期研究区森林(乔木)AGB进行定量反演与留一法(LOO)验证;根据两期反演结果叠加对比,在样地和区域尺度上定量分析研究区2009~2014年间森林AGB变化。在样地尺度上,基于森林资源清查样地结果与LOO法验证结果表明,2009年的AGB反演结果R2=0.56,RMSE=25.95 t/hm2;2014年R2=0.64;RMSE=24.55 t/hm2。2009年反演均值较样地计算结果均值偏高(预测:81.59 t/hm2,实测:78.64t/hm2);而2014年反演均值较样地计算结果偏低(预测:79.63 t/hm2;实测:82.48 t/hm2)。从区域尺度来看,2009年平均森林AGB为88.33 t/hm2;2014年的为94.61 t/hm2;平均AGB增长量为6.28 t/hm2;与前期研究利用扩展生物量因子法计算的结果接近(2008年和2013年分别为87.14 t/hm2、92.20 t/hm2)。采用基于快速迭代的KNN-FIFS方法,可大幅度提升高维度多模式遥感特征优选效率;充分融合主、被动遥感的多维观测特征,提高森林AGB反演精度及饱和点。在像素尺度上(30 m)利用LOO法对KNN-FIFS反演结果进行了验证,具有更强鲁棒性,避免了由于训练、检验样本抽选造成的随机误差。2009~2014年期间,内蒙古大兴安岭林区植被覆盖度整体呈现了明显的增长趋势;森林AGB也相应增加。自天然林保护工程实施以来,尽管森林火灾造成了局部较为严重的森林退化(覆盖度、AGB),但整体森林资源状况得到有效改善。

  • 单位
    中国林业科学研究院资源信息研究所; 中国林业科学研究院林业研究所; 河南农业职业学院