摘要
针对标准正余弦算法进化后期的停滞问题,对进化过程中的种群多样性进行分析,得出标准正余弦算法的种群多样性受控制因子的直接影响,且种群多样性表达式中控制因子指数随迭代次数的增加而下降.为了改善标准正余弦算法进化后期的探索和开采,提出多尺度正余弦优化算法.该算法通过自适应的多尺度控制因子调节群体多样性从而实现多层次的搜索;同时设计协助种群实施局部搜索,其种群独立进化,个体可以直接学习主群或协助种群中的最优个体,以加快收敛速度和提高解的质量.将所提出算法与改进的正余弦算法和新型群智能算法进行对比实验,实验结果表明,所提出算法能够较好地平衡进化过程中的探索和开采,提高全局优化能力.
- 单位