摘要

目的:提出一种基于医疗知识图谱的BERT-BiLSTM-CRF命名实体识别模型(MKG-BERT-BiLC),用于解决BERT类语言模型在处理医疗电子病历命名实体识别任务时,由于缺乏一定医疗领域背景知识而导致无法充分发挥其作用的问题。方法:将医疗知识图谱中的三元组信息集成到BERT-BiLSTM-CRF模型中,可实现为模型配备相应的医疗领域知识,进而增强模型的语言表征能力。结果:利用现有公开数据集进行实验,融入知识图谱后BERT-BiLSTM-CRF模型的识别精确率、召回率和F1值均有显著提升,优于现有NER模型。结论:MKG-BERT-BiLC模型能够更好地识别电子病历中的命名实体,具有一定的实用价值。

  • 单位
    厦门大学附属成功医院