首先在Banach空间中,利用半序方法和锥理论,研究了混合单调算子方程Lx=N(x,y)在反向上下解条件下的耦合解的存在性.然后在完备度量空间和Banach空间中,利用半序方法和锥理论,研究算子方程Lx=N(x,x)解的存在性唯一性问题,得到了一些新结论.所得的部分结论改进了最近一些文献中的重要结果.最后,将所得的部分结果应用于非线性算子固有值与固有元的存在性的研究中.