摘要
针对炼焦厂烟火排放全天候环保监测的要求,提出了基于改进YOLOv5s的焦炉烟火识别算法;该算法以YOLOv5s为基础网络,在主干网络Backbone中添加CBAM注意力机制模块,使网络更加关注重要的特征,提升目标检测的准确率;新增FReLU激活函数代替SiLU激活函数,提高激活空间的灵敏度,改善烟火图像视觉任务;在自建数据集中烟、火样本标签基础上,增加灯光标签来解决强灯光对火焰识别的干扰,并通过分流训练、检测的方式来解决昼夜场景的烟火检测问题;在自建数据集上做对比实验,更换激活函数后,联合CBAM模块的YOLOv5s模型效果最佳;实验结果显示,与原始YOLOv5s模型相比,在白天场景下的烟火识别mAP值提升了6.7%,在夜间场景下的烟火识别mAP值高达97.4%。
- 单位