摘要
风力机齿轮箱轴承故障信号具有典型非线性及非平稳特性,采用自适应变分模态法对4种状态下振动信号进行分解,提出基于分形盒维数-峭度阈值法(Adaptived Variational Mode Decomposition,AVMD)对处理所得分量进行筛选,选取富含故障信息的分量进行信号重构,采用多重分形去趋势波分析方法,分析重构信号的分形特征并识别其工作状态,结果表明:基于多重分形去趋势波分析法对非稳定轴承可进行有效地故障识别;轴承振动信号具有典型分形特征,在不同时间尺度下,标度指数、广义Hurst指数与多重分形谱均可反应轴承工作状态;3种多重分形谱参数对故障类型敏感度不同,谱函数最大值对应的奇异指数对内圈故障较为敏感,峰值占比对外圈故障较为敏感,分形谱宽对滚珠故障较为敏感。
- 单位