摘要

为更准确地预测空气质量指数(Air Quality Index, AQI),提出一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm, ISSA)的AQI预测模型(ISSA-BP)。利用麻雀搜索算法(Sparrow Search Algorithm, SSA)的全局搜索性能对BP神经网络的权值和阈值进行优化,解决传统BP神经网络在预测AQI过程中出现的收敛速度慢、易陷入局部最优等问题。同时,针对SSA在优化过程中的缺陷,引入立方映射和优化策略增强算法的全局搜索及收敛能力,进一步提高预测性能。应用ISSA-BP模型预测杭州市AQI,实验结果表明,与其他模型相比,该模型的预测精度有显著提升。本研究为大气污染防治提供了新的预测方法。

全文