摘要
自从Suykens提出新型统计理论学习方法-最小二乘支持向量机(LSSVM)以来,这种方法引起了广泛的关注,它在预测方面的良好性能得到了广泛应用.应用自组织数据挖掘(GMDH)方法改进LSSVM,提升了预测精度.首先利用GMDH方法选择有效的输入变量,再将这些变量作为LSSVM模型的输入,进行时间序列的预测,从而建立LSSVM和GMDH组合的混合模型GLSSVM.并通过汇率时间序列对本文模型进行了实证.结果表明,混合模型预测精度得到了明显的提高.
-
单位电子科技大学; 电子科技大学成都学院