基于二次分解和融合多特征的短时交通流量组合预测模型

作者:陈昆; 曲大义*; 王少杰; 王其坤
来源:广西师范大学学报(自然科学版), 2023, 41(04): 33-46.
DOI:10.16088/j.issn.1001-6600.2022062803

摘要

考虑到交通流的随机性和非线性特征导致预测精度低的问题,本文提出一种基于二次分解和融合多特征的组合预测模型。利用时序分解方法将提取交通流量中的趋势性和周期性特征,通过优化后的变分模态分解对残差分量进行二次分解,并对所得分量进行重构;使用相关系数法选取交通流的外部特征,建立3个相异模型对融合外部特征后的分量进行预测;利用强化学习优化各模型的权重,加权求和得到最终的预测结果。利用长沙市区的交通流量进行仿真分析,结果表明:与长短时记忆神经网络模型、卷积神经网络和门控循环单元的组合模型、二次分解后的BP和二次分解后的轻量级梯度提升机相比,本文建立的模型对城市道路交通流的预测效果更好,平均绝对误差为2.622,均方根误差为3.479,均优于对比模型的预测误差,验证了模型的有效性。

全文