摘要
在远程水表读数自动识别系统中,为减少网络模型参数量,改善受雾化、抖动等干扰的水表复杂场景图像读数识别精度及半字识别问题,提出了一种基于改进YOLOv4网络的水表读数识别方法。首先,利用深度可分离卷积与引入压缩与激发(squeeze-and-excitation, SE)注意力机制的MobileNetv2瓶颈结构,分别替代YOLOv4网络原有的标准卷积和主干网络;其次,利用加权平均非极大值抑制算法改进预测输出头,形成了一种网络模型参数量明显降低但检测精度不下降的改进YOLOv4网络,同时有效改善了对水表读数“半字”识别的漏检和错检问题;最后,基于字符边框定位的水表读数提取方法,实现“半字”准确提取问题。实验结果表明,所提方法与多种网络学习方法相比,模型参数量压缩14.4%以上,读数识别的准确率和召回率对普通场景水表图像分别提升了0.04%和0.05%以上,对受雾化、抖动等干扰的复杂场景水表图像分别提升了0.11%和0.37%以上。
- 单位