摘要

针对当前深度神经网络模型在检测小缺陷目标时性能较差的问题,提出了一种基于改进U-Net的工件表面缺陷分割方法。该方法设计了一种仅下采样3次的U型网络,在保持图像特征分辨率的同时获得足够的感受野,有效解决神经网络多次下采样造成的小目标信息丢失问题;引入Dice损失和Focal损失组成的混合损失函数,通过增强分割损失权重并抑制背景信息来提高分割效果,有效解决小缺陷目标的低概率密度问题。通过在表面缺陷数据集上的大量实验和分析,结果表明该算法能够很好地细分出缺陷区域,并在分割精度与速度之间获得平衡。

  • 单位
    江苏省海洋资源开发研究院(连云港); 电子工程学院