摘要
针对酒瓶盖瑕疵会影响产品质量的问题,提出了一种酒瓶盖瑕疵YOLOv3-MRHA检测算法,基于YOLOv3算法,对其主干网络和特征提取层进行改进。为减少主干网络特征丢失现象,提出了多级特征融合(multilevel feature fusion, MFF)模块;为提高检测的准确率,增加了尺度为104×104的特征层,并构造了一种增强特征信息的残差特征增强(residual feature enhancement, RFE)模块;为提高深层特征层的检测能力,引入了空洞卷积,使浅层信息向下融合,在特征提取层使用通道注意力机制。结果表明,所提YOLOv3-MRHA算法的检测精度比YOLOv3算法提高近6%,可有效地提高瑕疵检测的准确率,满足工业质检的要求。
- 单位