摘要
将多种数值方法耦合,充分利用各种方法的优点建立新的数值方法,是求解三维复杂问题的有效途径之一.本文将无单元Galerkin (Element-Free Galerkin, EFG)方法、有限元法和维数分裂法耦合,提出了求解三维弹性力学问题的快速耦合方法(Fast Hybrid Method, FHM).将三维弹性力学问题分裂为若干个二维平面问题,对于每个二维问题采用罚函数法施加边界条件,并推导其相应的积分弱形式,引入Shepard基函数的移动最小二乘法建立形函数,进而推导二维平面问题的离散方程.第三个方向上采用有限元法将这些二维离散方程进行耦合,可以得到原三维弹性力学问题的快速耦合方法数值解的求解公式.通过数值算例验证了本文快速耦合方法求解三维弹性力学问题的收敛性,将数值解与解析解对比,说明了本文方法求解三维弹性力学问题的有效性.
- 单位